Lecture 2

Lecture 2

Optimization Methods(continued)
Convergence guarantees for GD
Stationary points: non-convex objectives
Stochastic Gradient Descent
Second-order methods (Newton)

Linear Classifiers

Perceptron
0 — 1 Loss and SGD
Algorithm

Logistic Regression
Sigmoid function
MLE(Maximum likelihood estimation)

Optimization Methods(continued)
Convergence guarantees for GD

start with some w®
Fort=0toT :

wt) =) — v F(w®)
t=t+1

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations ¢ (in terms of €) are needed to achieve
F(w®) — F(w*) <e
Even for non-convex objectives, some guarantees exist:
e.g. how many iterations ¢ (in terms of €) are needed to achieve
IVEw®)|| <e
that is, how close is w®) as an approximate stationary point

for convex objectives, stationary point = global minimizer.

for non-convex objectives, what does it mean?

Stationary points: non-convex objectives
It can be a local minimizer or even a local/global maximizer. (but the latter is not an issue for GD)
It can also be neither a local minimizer nor a local maximizer

eg. f(w) = w? —wi, Vf(w) = (2w, —2ws), (0,0) point is stationary. It's a local max for direction
ws (w1 = 0), but a local min for direction wy (we = 0) .

05

Point like (0, 0) is known as a saddle point.
But not all saddle look like 'saddle":

f(w) = w? — w3, Vf(w) = (2wq,3w3), (0,0) s stationary but not local min/max for direction w, when
wi = 0.

In this case, GD gets stuck at (0, 0) for any initial point with wy > 0 and small n

Even worse, distinguishing local min and sanddle point is generally NP-hard.
Stochastic Gradient Descent

SGD: keep moving in the noisy negative gradient direction
where 6F(w(t)) is a random variable(called stochastic gradient) s.t.
E[VF(w®)] = VF(w®Y) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!

Similar convergence guarantees, usually needs more iterations but each iteration takes less time.

e GD/SGD coverages to a stationary point.
e for convex objectives, this is all we need.

e for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization

escapes "good" saddle points)

e recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers.

e justify the practical effectiveness of GD/SGD (default method to try)
Second-order methods (Newton)
GD: first-orders Taylor approximation

F(w) =~ F(w(t)) + VF(w(t))T(w . w(t))

F0) ~ £(&) + F @) -)+ T2y a2

what about a second-order Taylor approximation?

1
F(w) = F(w®) + VF(wNT (w — w®) + 5 (w- w T Hy(w — w®)
where H, = V2F(w®) € R is Hessian of F at w*
0%F(w)
Hyj= |
»J a,wlawj |w7w()

Def : F(w) = 2nd order approzimation
VE(w) =0, ..

H 1
VF(w®) + Huw — Ttw(t) — EHtw(t) =0

Hyw = Huw® — VF(w®)
w=w? — H'VF(w®)
Newton method: w1 « w® — H 'V F(w®)

GD: wtt «— w® — pVF(w®)

Newton's Method GD
no learning rate need to tune n
super fast convergence slower convergence

Know & invert Hessian (inversion needs O(d?) time naively) fast (O(d) time)

Linear Classifiers

input: 2 € R¢

output: y € [C] ={1,2,---,C}
goal: learn a mapping f : R — [C]
Number of classes: C' = 2

Labels: {+1, -1}

+1ifwlz >0
—1lifwlz <0

sign(wlz) = {
Def: the function class of separating hypo-planes
F ={f(z) = sign(w’z) : w € RY}
it still makes sense for "almost" linearly separable data

Most common loss:

I(f(2),y) = 1(f(2) # v)

Loss as a function of yw’z

lo—1(yw'z) = 1(yw’z < 0)
0 — 1 loss is not convex, and is NP-hard in general.
perceptron loss: [(z) = max{0, —z}.
Use a convex surrogate loss:
hinge loss: [(z) = max{0,1 — z}
logistic loss: I(z) = log(1 + exp(—z))

Find ERM:

weR? N

1 n
w” = arg min —(Zl(yina:i))
i—1
where l(+) is a convex surrogate loss

Perceptron

0 — 1 Loss and SGD
1 m
F(w) = - Zl(yz‘wT%)
i—1
_1 Z max{0, —y;w’ z;}
n 4

Let's try GD | SGD.

Gradient is

only misclassified examples count

n
n
n

i=1

GD:w<+ w+ 1yiwTz; < 0]yz;

need the entire training set for every GD update.
How to get a stochastic gradient?

pick one example i € [n] uniformly at random, let
VE(w") = —1fywz; < 0]y

Unbiased, why?

3 1 &
E[VF(w(t))] = Z _“[yi'mei < Olyiz;
i—1

= VF(w®)
SGD update: w + w + 1 1(y;wlz; < 0)y;z;
This is fast! one data-point per update
objective function of most ML tasks is a finite sum. trick applies generally.
Algorithm

SGD with 7 = 1 on perceptron loss:

initialize w =0
Repeat
pick x; ~ Unif(x1, -, xy)
If sign(w’z;) # y; :
w4 W+ Y%

Intuition: say that w makes mistake on (z;, y;)

yinaci <0
consider w' = w + y;;
() T = Yiw mz"‘yzaj Z;

if z; #0:y;(w)Txi > yiw T;

Perceptron algorithm: visually

Repeat: Relafed Fo gueskon in
e Pick a data point @; uniformly at random doss : if thene ore
nulbpe u.la% B cloys dotr -
o If sgn(wlz;) # v . by
W W+ Y el D T
Rt ’ _ m-am k

t’ -
T Y |
[(3 .]
p

Porceptven sty woud |l
"3 f tese hypopl

A
Y

.
\
vl
.
X
= «. Crew

If training set is linearly separable: Perceptron converges in a finite number of steps; Training erroris 0 .

There are also guarantees when the data are not linearly separable

Logistic Regression

1
F(w) = — Zl yinmZ-

w3 T exp(ysza:z)

Instead of {41}, predict the probability (regression on probability)

Sigmoid function
sigmoid + linear model:
P(y + 1|X,w) = o(w’z)

1

where o(z) = Fppe— (sigmoid)
1

1+e*

o(z) = : between 0 and 1 (good as probability)
o(wl'z) > 0.5 < wl'z > 0, consistent with predicting the label with sign(w!z)
larger w”z = larger o(w”z) = higher confidence in label 1
o(z) + o(—2) = 1forall 2
The probability of label —1 is:
Py = —1|z;w) =1 — P(y = +1|z;w)

=1-o(w'z) = o(—w'2)

1
14+e-wele

Therefore, we can model P(y|z; w) = o(ywlz) =

MLE(Maximum likelihood estimation)

Specifically, the probability of seeing labels y;, - - -, y,, given x1,- - -, x, as a function of some w is:
N
P(w) = HP(yi|xi;’w)
i=1

find w* that maximizes the probability P(w) :

w* = arg max P(w)
w

n
= argmax Zl In P(y;|z;; w)

7

= argminz —In P(y;|z;; w)
w
i—1
" T
= arg minz In(1+ e ¥ i)
T

n
= arg min Z l(ywTz;)
w
=1

= arg min F(w)

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

SGD to logistic loss:

W — w — anl(yinxi)

_efz

=w— U(mbzyiw%i)yimi
= w + no(—yw’ z;)y;

= w + nP(—yilzs; w)yiz;
This is a soft version of perceptron
P(—y;|zs; w) versus 1]y; # sign(w’z;)]
Unbiased, why?

E[VF(w)] = VF(w) (i is drawn uniformly from [n])

1 1 —Z _
Chain Rule : Olog(1 + 7)) S ——
0z 1+e*

1 e ”?
o(—2)=1—-0(2)=1- 7o~ 1te>

	Lecture 2
	Optimization Methods(continued)
	Convergence guarantees for GD
	Stationary points: non-convex objectives
	Stochastic Gradient Descent
	Second-order methods (Newton)

	Linear Classifiers
	Perceptron
	0-1 Loss and SGD
	Algorithm

	Logistic Regression
	Sigmoid function
	MLE(Maximum likelihood estimation)

