
Lecture 2

Lecture 2
Optimization Methods(continued)

Convergence guarantees for GD
Stationary points: non-convex objectives
Stochastic Gradient Descent
Second-order methods (Newton)

Linear Classifiers
Perceptron

 Loss and SGD
Algorithm

Logistic Regression
Sigmoid function
MLE(Maximum likelihood estimation)

Optimization Methods(continued)

Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.

They tell you how many iterations (in terms of) are needed to achieve

Even for non-convex objectives, some guarantees exist:

e.g. how many iterations (in terms of) are needed to achieve

that is, how close is as an approximate stationary point

for convex objectives, stationary point global minimizer.

for non-convex objectives, what does it mean?

Stationary points: non-convex objectives

It can be a local minimizer or even a local/global maximizer. (but the latter is not an issue for GD)

It can also be neither a local minimizer nor a local maximizer

eg. point is stationary. It's a local max for direction
 , but a local min for direction .

Point like is known as a saddle point.

But not all saddle look like 'saddle':

 is stationary but not local min/max for direction when
 .

In this case, GD gets stuck at for any initial point with and small

Even worse, distinguishing local min and sanddle point is generally NP-hard.

Stochastic Gradient Descent

SGD: keep moving in the noisy negative gradient direction

where is a random variable(called stochastic gradient) s.t.

Key point: it could be much faster to obtain a stochastic gradient!

Newton's Method GD

no learning rate need to tune

super fast convergence slower convergence

Know & invert Hessian (inversion needs time naively) fast (time)

Similar convergence guarantees, usually needs more iterations but each iteration takes less time.

GD/SGD coverages to a stationary point.
for convex objectives, this is all we need.
for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization
escapes "good" saddle points)
recent research shows that many problems have no "bad" saddle points or even "bad" local minimizers.
justify the practical effectiveness of GD/SGD (default method to try)

Second-order methods (Newton)

GD: first-orders Taylor approximation

what about a second-order Taylor approximation?

Newton method:

GD:

Linear Classifiers

input:

output:

goal: learn a mapping

Number of classes:

Labels:

Def: the function class of separating hypo-planes

it still makes sense for "almost" linearly separable data

Most common loss:

!

Loss as a function of

!

 loss is not convex, and is NP-hard in general.

perceptron loss: .

Use a convex surrogate loss:

hinge loss:

logistic loss:

Find ERM:

Perceptron

 Loss and SGD

Let's try GD|SGD.

Gradient is

!

only misclassified examples count

!

need the entire training set for every GD update.

How to get a stochastic gradient?

pick one example uniformly at random, let

!

Unbiased, why?

!

SGD update: !

This is fast! one data-point per update

objective function of most ML tasks is a finite sum. trick applies generally.

Algorithm

SGD with on perceptron loss:

Intuition: say that makes mistake on

If training set is linearly separable: Perceptron converges in a finite number of steps; Training error is .

There are also guarantees when the data are not linearly separable

Logistic Regression

Instead of , predict the probability (regression on probability)

Sigmoid function

sigmoid + linear model:

 : between and (good as probability)

 , consistent with predicting the label with

larger larger higher confidence in label

 for all

The probability of label is:

Therefore, we can model

MLE(Maximum likelihood estimation)

Specifically, the probability of seeing labels given as a function of some is:

find that maximizes the probability :

Minimizing logistic loss is exactly doing MLE for the sigmoid model!

SGD to logistic loss:

This is a soft version of perceptron

!

Unbiased, why?

	Lecture 2
	Optimization Methods(continued)
	Convergence guarantees for GD
	Stationary points: non-convex objectives
	Stochastic Gradient Descent
	Second-order methods (Newton)

	Linear Classifiers
	Perceptron
	0-1 Loss and SGD
	Algorithm

	Logistic Regression
	Sigmoid function
	MLE(Maximum likelihood estimation)

